Wednesday, December 20, 2017

nVision Performance Tuning 12: Hinting nVision with SQL Profiles

This blog post is part of a series that discusses how to get optimal performance from PeopleSoft nVision reporting as used in General Ledger.  It is a PeopleSoft specific version of a posting on my Oracle blog.

As I explained earlier in this series, it is not possible to add hints to nVision.  The dynamic nature of the nVision SQL means that it is not possible to use SQL Patches.  nVision SQL statements contain literal values and never use bind variables.  When dynamic selectors are used, the SELECTOR_NUM will be different for every execution. A SQL_ID found in one report will be not be seen again in another report.  Even static selector numbers will change after the tree is updated or when a new tree is created.
It is possible to use SQL Profiles to introduce hints because they can optionally match the force match signature of a SQL.  SQL statements that differ only in the literal values they contain will have different SQL IDs but will have the same force matching signature.  Although you will still have a lot of force matching signatures, you should find that you have far fewer force matching signatures than SQL_IDs.   Picking out the signatures that account for the most elapsed execution time and creating profiles for them is manageable.
Note: SQL Profiles require the Tuning Pack to be licenced.
As far as is possible, good nVision performance should be achieved by setting appropriate tree performance options at tree level.  These are global settings.  You may find that a particular setting on a particular tree is not optimal for all reports.  You may then choose to override the tree-level setting in specific layouts.  You may also find that you still need hints to control execution plans.
In particular, parallel query can be an effective tactic in nVision performance tuning.  However, you should put a degree of parallelism on PS_LEDGER or PS_LEDGER_BUDG because that will invoke parallelism in many other processes.  I have found that even putting a degree of parallelism on a summary ledger table can easily result in too many concurrent parallel queries.   On OLTP systems, such as PeopleSoft, I recommend that parallelism should be used sparingly and in a highly controlled and targetted fashion.

Example

Let's take the following nVision query as an example.
SELECT L2.TREE_NODE_NUM,L3.TREE_NODE_NUM,SUM(A.POSTED_TOTAL_AMT) 
FROM PS_XX_SUM_CONSOL_VW A, PSTREESELECT05 L2, PSTREESELECT10 L3 
WHERE A.LEDGER='S_USMGT' 
AND A.FISCAL_YEAR=2017 
AND A.ACCOUNTING_PERIOD BETWEEN 0 AND 12 
AND (A.DEPTID BETWEEN 'A0000' AND 'A8999' OR A.DEPTID BETWEEN 'B0000' AND 'B9149' 
OR A.DEPTID='B9156' OR A.DEPTID='B9158' OR A.DEPTID BETWEEN 'B9165' AND 'B9999' 
OR A.DEPTID BETWEEN 'C0000' AND 'C9999' OR A.DEPTID BETWEEN 'D0000' AND 'D9999' 
OR A.DEPTID BETWEEN 'G0000' AND 'G9999' OR A.DEPTID BETWEEN 'H0000' AND 'H9999' 
OR A.DEPTID='B9150' OR A.DEPTID=' ') 
AND L2.SELECTOR_NUM=10228 
AND A.BUSINESS_UNIT=L2.RANGE_FROM_05 
AND L3.SELECTOR_NUM=10231 
AND A.ACCOUNT=L3.RANGE_FROM_10 
AND A.CHARTFIELD1='0012345' 
AND A.CURRENCY_CD='GBP' 
GROUP BY L2.TREE_NODE_NUM,L3.TREE_NODE_NUM
/
We can tell from the equality join conditions that the two selectors still joined to the are dynamic selectors.
A third selector on DEPTID has been suppressed with the 'use literal values' performance option.  The number of DEPTID predicates in the statement will depend on the tree and the node selected for the report.  Note, that if these change then the statement will not force match the same profile.  SQL profiles might suddenly cease to work due to a tree or selection criteria change.
This is the plan I get initially and without a profile. It doesn't perform well.
Plan hash value: 808840077
-----------------------------------------------------------------------------------------------------------------------------------
| Id  | Operation                                     | Name              | Rows  | Bytes | Cost (%CPU)| Time     | Pstart| Pstop |
-----------------------------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                              |                   |       |       | 10408 (100)|          |       |       |
|   1 |  HASH GROUP BY                                |                   |   517 | 50666 | 10408   (1)| 00:00:01 |       |       |
|   2 |   HASH JOIN                                   |                   |   517 | 50666 | 10407   (1)| 00:00:01 |       |       |
|   3 |    PARTITION RANGE SINGLE                     |                   |   731 | 13158 |     3   (0)| 00:00:01 | 10228 | 10228 |
|   4 |     INDEX FAST FULL SCAN                      | PSAPSTREESELECT05 |   731 | 13158 |     3   (0)| 00:00:01 | 10228 | 10228 |
|   5 |    HASH JOIN                                  |                   |   518 | 41440 | 10404   (1)| 00:00:01 |       |       |
|   6 |     PARTITION RANGE SINGLE                    |                   |   249 |  5727 |     2   (0)| 00:00:01 | 10231 | 10231 |
|   7 |      INDEX FAST FULL SCAN                     | PSAPSTREESELECT10 |   249 |  5727 |     2   (0)| 00:00:01 | 10231 | 10231 |
|   8 |     PARTITION RANGE ITERATOR                  |                   |  7785 |   433K| 10402   (1)| 00:00:01 |    28 |    40 |
|   9 |      TABLE ACCESS BY LOCAL INDEX ROWID BATCHED| PS_X_LEDGER_ACCTS |  7785 |   433K| 10402   (1)| 00:00:01 |    28 |    40 |
|  10 |       SORT CLUSTER BY ROWID BATCHED           |                   |  5373 |       |  5177   (1)| 00:00:01 |       |       |
|  11 |        INDEX SKIP SCAN                        | PS_X_LEDGER_ACCTS |  5373 |       |  5177   (1)| 00:00:01 |    28 |    40 |
-----------------------------------------------------------------------------------------------------------------------------------
These are the hints I want to introduce (on Oracle 12c).
SELECT /*+OPT_PARAM('parallel_degree_policy','AUTO') OPT_PARAM('parallel_min_time_threshold',2) 
OPT_PARAM('parallel_degree_limit',4) REWRITE PX_JOIN_FILTER(PS_XX_SUM_GCNSL_MV)*/…
  • Use automatic parallel degree, statement queuing and in-memory parallel execution.
  • Invoke parallelism if the statement is estimated to run for at least 2 seconds
  • However, I will also limit the automatic parallelism to a degree of 4
  • Force materialize view rewrite
  • Use a Bloom filter when joining to the materialized view.
I have created a data-driven framework to create the profiles. I have created working storage table to hold details of each force matching signature for which I want to create a profile.
CREATE TABLE dmk_fms_profiles
(force_matching_signature    NUMBER NOT NULL
,sql_id                      VARCHAR2(13) 
,plan_hash_value             NUMBER
,module                      VARCHAR2(64)
,report_id                   VARCHAR2(32) /*Application Specific*/
,tree_list                   CLOB         /*Application Specific*/
,sql_profile_name            VARCHAR2(30)
,parallel_min_time_threshold NUMBER
,parallel_degree_limit       NUMBER
,other_hints                 CLOB
,delete_profile              VARCHAR2(1)
,sql_text                    CLOB
,CONSTRAINT dmk_fms_profiles_pk PRIMARY KEY (force_matching_signature)
,CONSTRAINT dmk_fms_profiles_u1 UNIQUE (sql_id)
,CONSTRAINT dmk_fms_profiles_u2 UNIQUE (sql_profile_name)
)
/
Using conditional parallelism with the PARALLEL_MIN_TIME_THRESHOLD, but limited with PARALLEL_DEGREE_LIMIT is an effective tactic with nVision, so I have specified columns in the metadata table for those hints, otherwise, hints are injected via a string. I identified the problematic SQL by analysis with ASH, and hence I also obtained the FORCE_MATCHING_SIGNATURE. The metadata is keyed by FORCE_MATCHING_SIGNATURE. I have specified a meaningful name for the SQL profile.
INSERT INTO dmk_fms_profiles (force_matching_signature, parallel_min_time_threshold, parallel_degree_limit, other_hints, sql_profile_name) 
VALUES (16625752171077499412, 1, 4, 'REWRITE PX_JOIN_FILTER(PS_XX_SUM_GCNSL_MV)', 'NVS_GBGL123I_BU_CONSOL_ACCOUNT');
COMMIT;
Profiles are created using the text of a SQL rather than the SQL_ID or FORCE_MATCHING_SIGNATURE directly. Therefore the SQL_TEXT must be extracted from the AWR, so this method also requires that the SQL statement has been captured by an AWR snapshot.
UPDATE dmk_fms_profiles a
SET    (module, action, sql_id, plan_hash_value, sql_text)
=      (SELECT s.module, s.action, s.sql_id, s.plan_hash_value, t.sql_text
        FROM   dba_hist_sqlstat s
        ,      dba_hist_sqltext t
        WHERE  t.dbid = s.dbid
        AND    t.sql_id = s.sql_id
        AND    s.force_matching_signature = a.force_matching_signature
        AND    s.snap_id = (
   SELECT MAX(s1.snap_id)
  FROM   dba_hist_sqlstat s1
  WHERE  s1.force_matching_signature = a.force_matching_signature
  AND    s1.module = 'RPTBOOK'     /*Application Specific*/
   AND    s1.action LIKE 'PI=%:%:%' /*Application Specific*/)
  AND    s.module = 'RPTBOOK'             /*Application Specific*/
  AND    s.action LIKE 'PI=%:%:%'         /*Application Specific*/
  AND    ROWNUM = 1)
WHERE sql_id IS NULL
/

MERGE INTO dmk_fms_profiles u
USING (
SELECT a.sql_id, a.force_matching_signature, p.name
FROM   dmk_fms_profiles a
,      dba_sql_profiles p
WHERE  p.signature = a.force_matching_signature
) s
ON (s.force_matching_signature = u.force_matching_signature)
WHEN MATCHED THEN UPDATE
SET u.sql_profile_name = s.name
/
Columns REPORT_ID and TREE_LIST contain application specific information extracted from the application instrumentation and tree selector logging.
/*Application Specific - extract report ID from ACTION*/
UPDATE dmk_fms_profiles a
SET    report_id = substr(regexp_substr(s.action,':([A-Za-z0-9_-])+',1,1),2)
WHERE  report_id IS NULL
AND    action IS NOT NULL
/
/*Application Specific - extract financial analysis tree from application logging*/
UPDATE dmk_fms_profiles a
SET    tree_list = 
       (SELECT LISTAGG(tree_name,', ') WITHIN GROUP (ORDER BY tree_name)
       FROM (select l.tree_name, MAX(l.length) length
             FROM   dba_hist_sql_plan p
             ,      ps_nvs_treeslctlog l
             WHERE  p.plan_hash_value = a.plan_hash_value
             AND    p.sql_id = a.sql_id
             AND    p.object_name like 'PS%TREESELECT__'
             AND    p.partition_start = partition_stop
             AND    p.partition_start = l.selector_num
             AND    l.tree_name != ' '
             GROUP BY l.tree_name)
      )
WHERE tree_list IS NULL
/
Now I can produce a simple report of the metadata in order to see what profiles should be created.
column sql_text word_wrapped on format a110
column module format a8
column report_id heading 'nVision|Report ID'
column tree_list word_wrapped on format a20
column plan_hash_value             heading 'SQL Plan|Hash Value'         format 9999999999
column parallel_min_time_threshold heading 'Parallel|Min Time|Threshold' format 999
column parallel_degree_limit       heading 'Parallel|Degree|Limit'       format 999
set long 500
SELECT * FROM dmk_fms_profiles
/

                                          SQL Plan                                                                           
FORCE_MATCHING_SIGNATURE SQL_ID         Hash Value MODULE   ACTION                                                           
------------------------ ------------- ----------- -------- ---------------------------------------------------------------- 
                                                                                      Parallel Parallel
nVision                                                                               Min Time   Degree
Report ID                        TREE_LIST            SQL_PROFILE_NAME               Threshold    Limit D
-------------------------------- -------------------- ------------------------------ --------- -------- -
OTHER_HINTS
--------------------------------------------------------------------------------
SQL_TEXT
--------------------------------------------------------------------------------------------------------------
    12803175998948432502 5pzxhha3392cs   988048519 RPTBOOK  PI=3186222:USGL233I:10008                                        
USGL233I                         BU_GAAP_CONSOL,      NVS_GBGL123I_BU_CONSOL_ACCOUNT                   1        4
                                 GAAP_ACCOUNT
REWRITE PX_JOIN_FILTER(PS_XX_SUM_GCNSL_MV)
SELECT L2.TREE_NODE_NUM,A.ACCOUNT,SUM(A.POSTED_TOTAL_AMT) FROM PS_LEDGER A, PSTREESELECT05 L2, PSTREESELECT10 L3
WHERE A.LEDGER='S_GBMGT' AND A.FISCAL_YEAR=2017 AND A.ACCOUNTING_PERIOD BETWEEN 0 AND 12 AND (A.DEPTID BETWEEN
'A0000' AND 'A8999' OR A.DEPTID BETWEEN 'B0000' AND 'B9149' OR A.DEPTID='B9156' OR A.DEPTID='B9158' OR A.DEPTID
BETWEEN 'B9165' AND 'B9999' OR A.DEPTID BETWEEN 'C0000' AND 'C9999' OR A.DEPTID BETWEEN 'D0000' AND 'D9999' OR
A.DEPTID BETWEEN 'G0000' AND 'G9999' OR A.DE
Next, this PL/SQL block will create or recreate SQL profiles from the metadata. The various hints can be concatenated into a single string and passed as a parameter to SQLPROF_ATTR. The SQL text is passed as a parameter when the profile is created.
set serveroutput on
DECLARE
  l_signature NUMBER;
  h       SYS.SQLPROF_ATTR;
  e_no_sql_profile EXCEPTION;
  PRAGMA EXCEPTION_INIT(e_no_sql_profile, -13833);
  l_description CLOB;
BEGIN

FOR i IN (
  SELECT f.*, s.name
  FROM   dmk_fms_profiles f
    LEFT OUTER JOIN dba_sql_profiles s
    ON f.force_matching_signature = s.signature
) LOOP

  BEGIN 
    IF i.name IS NOT NULL AND i.delete_profile = 'Y' THEN
      dbms_sqltune.drop_sql_profile(name => i.name);
    END IF;
    EXCEPTION WHEN e_no_sql_profile THEN NULL;
  END;

  IF i.delete_profile = 'Y' THEN 
    NULL;
  ELSIF i.sql_text IS NOT NULL THEN
    h := SYS.SQLPROF_ATTR(
q'[BEGIN_OUTLINE_DATA]',
CASE WHEN i.parallel_min_time_threshold>=0 THEN 'OPT_PARAM(''parallel_degree_policy'',''AUTO'') ' END||
CASE WHEN i.parallel_degree_limit      >=0 THEN 'OPT_PARAM(''parallel_degree_limit'','      ||i.parallel_degree_limit      ||') ' END||
CASE WHEN i.parallel_min_time_threshold>=0 THEN 'OPT_PARAM(''parallel_min_time_threshold'','||i.parallel_min_time_threshold||') ' END||
i.other_hints,
q'[END_OUTLINE_DATA]');

    l_signature := DBMS_SQLTUNE.SQLTEXT_TO_SIGNATURE(i.sql_text);
    l_description := 'coe nVision '||i.report_id||' '||i.tree_list||' '||i.force_matching_signature||'='||l_signature;
    dbms_output.put_line(i.sql_profile_name||' '||l_description);

    DBMS_SQLTUNE.IMPORT_SQL_PROFILE (
sql_text    => i.sql_text,
profile     => h,
name        => i.sql_profile_name,
description => l_description,
category    => 'DEFAULT',
validate    => TRUE,
replace     => TRUE,
force_match => TRUE /* TRUE:FORCE (match even when different literals in SQL). FALSE:EXACT (similar to CURSOR_SHARING) */ );

  END IF;
END LOOP;
END;
/
I can verify that the profile has been created, and the hints that it contains, thus:
SELECT profile_name,
       xmltype(comp_data) as xmlval
FROM   dmk_fms_profiles p
,      dbmshsxp_sql_profile_attr  x
WHERE  x.profile_name = p.sql_profile_name
AND    p.status = 'ENABLED'
ORDER BY 1
/

PROFILE_NAME                                                                                                                                                                                            
------------------------------
XMLVAL                                                                                                                                                                                                  
------------------------------------------------------------------------------------------------
NVS_GBGL123I_BU_CONSOL_ACCOUNT
<![CDATA[BEGIN_OUTLINE_DATA]]>                                                                                                                                                           
  <![CDATA[OPT_PARAM('parallel_degree_policy','AUTO') OPT_PARAM('parallel_degree_limit',4) OPT_PARAM('parallel_min_time_threshold',1) REWRITE PX_JOIN_FILTER(PS_XX_SUM_GCNSL_MV)]]>                                           
  <![CDATA[END_OUTLINE_DATA]]>
And now when the application runs, I get the plan that I wanted.
  • The query runs in parallel.
  • The SQL is rewritten to use materialized view.
  • There are no indexes on the materialized view, so it must full scan it.
  • It generates a bloom filter from PSTREESELECT10 and applies it to the materialized view.
---------------------------------------------------------------------------------------------------------------------------------------------------------------------
| Id  | Operation                                         | Name               | Rows  | Bytes | Cost (%CPU)| Time     | Pstart| Pstop |    TQ  |IN-OUT| PQ Distrib |
---------------------------------------------------------------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                                  |                    |       |       |  2219 (100)|          |       |       |        |      |            |
|   1 |  PX COORDINATOR                                   |                    |       |       |         |             |       |       |        |      |            |
|   2 |   PX SEND QC (RANDOM)                             | :TQ10004           |   111 |  9879 |  2219   (6)| 00:00:01 |       |       |  Q1,04 | P->S | QC (RAND)  |
|   3 |    HASH GROUP BY                                  |                    |   111 |  9879 |  2219   (6)| 00:00:01 |       |       |  Q1,04 | PCWP |            |
|   4 |     PX RECEIVE                                    |                    |   111 |  9879 |  2219   (6)| 00:00:01 |       |       |  Q1,04 | PCWP |            |
|   5 |      PX SEND HASH                                 | :TQ10003           |   111 |  9879 |  2219   (6)| 00:00:01 |       |       |  Q1,03 | P->P | HASH       |
|   6 |       HASH GROUP BY                               |                    |   111 |  9879 |  2219   (6)| 00:00:01 |       |       |  Q1,03 | PCWP |            |
|   7 |        HASH JOIN                                  |                    |   536 | 47704 |  2218   (6)| 00:00:01 |       |       |  Q1,03 | PCWP |            |
|   8 |         PX RECEIVE                                |                    |   536 | 38056 |  2215   (6)| 00:00:01 |       |       |  Q1,03 | PCWP |            |
|   9 |          PX SEND HYBRID HASH                      | :TQ10002           |   536 | 38056 |  2215   (6)| 00:00:01 |       |       |  Q1,02 | P->P | HYBRID HASH|
|  10 |           STATISTICS COLLECTOR                    |                    |       |       |         |             |       |       |  Q1,02 | PCWC |            |
|  11 |            HASH JOIN                              |                    |   536 | 38056 |  2215   (6)| 00:00:01 |       |       |  Q1,02 | PCWP |            |
|  12 |             BUFFER SORT                           |                    |       |       |         |             |       |       |  Q1,02 | PCWC |            |
|  13 |              JOIN FILTER CREATE                   | :BF0000            |   236 |  3776 |     2   (0)| 00:00:01 |       |       |  Q1,02 | PCWP |            |
|  14 |               PX RECEIVE                          |                    |   236 |  3776 |     2   (0)| 00:00:01 |       |       |  Q1,02 | PCWP |            |
|  15 |                PX SEND BROADCAST                  | :TQ10000           |   236 |  3776 |     2   (0)| 00:00:01 |       |       |        | S->P | BROADCAST  |
|  16 |                 PARTITION RANGE SINGLE            |                    |   236 |  3776 |     2   (0)| 00:00:01 | 36774 | 36774 |        |      |            |
|  17 |                  INDEX FAST FULL SCAN             | PSAPSTREESELECT10  |   236 |  3776 |     2   (0)| 00:00:01 | 36774 | 36774 |        |      |            |
|  18 |             JOIN FILTER USE                       | :BF0000            |  8859 |   475K|  2213   (6)| 00:00:01 |       |       |  Q1,02 | PCWP |            |
|  19 |              PX BLOCK ITERATOR                    |                    |  8859 |   475K|  2213   (6)| 00:00:01 |    29 |    41 |  Q1,02 | PCWC |            |
|  20 |               MAT_VIEW REWRITE ACCESS STORAGE FULL| PS_XX_SUM_GCNSL_MV |  8859 |   475K|  2213   (6)| 00:00:01 |    29 |    41 |  Q1,02 | PCWP |            |
|  21 |         BUFFER SORT                               |                    |       |       |         |             |       |       |  Q1,03 | PCWC |            |
|  22 |          PX RECEIVE                               |                    |   731 | 13158 |     3   (0)| 00:00:01 |       |       |  Q1,03 | PCWP |            |
|  23 |           PX SEND HYBRID HASH                     | :TQ10001           |   731 | 13158 |     3   (0)| 00:00:01 |       |       |        | S->P | HYBRID HASH|
|  24 |            PARTITION RANGE SINGLE                 |                    |   731 | 13158 |     3   (0)| 00:00:01 | 36773 | 36773 |        |      |            |
|  25 |             INDEX FAST FULL SCAN                  | PSAPSTREESELECT05  |   731 | 13158 |     3   (0)| 00:00:01 | 36773 | 36773 |        |      |            |
---------------------------------------------------------------------------------------------------------------------------------------------------------------------

Conclusion SQL 

Profiles can be used in much the same way as SQL Patches to introduce hints into application SQL without changing the code, the difference being that SQL Profiles can force match SQL.  However, SQL Profiles do require the Tuning pack to be licenced, whereas SQL Patches and Baselines do not.
Applying force matching SQL profiles to nVision is an effective, though reactive tactic.   Tree changes can result in changes to the number of literal criteria in nVision SQL statements that may, therefore, cease to match existing profiles.  nVision will always require on-going monitoring and introduction of new profiles.

No comments :